
System call tracing overhead

Jörg Zinke

Potsdam University
Institute for Computer Science

Operating Systems and Distributed Systems

Dresden, 2009/10/29



Outline

1 Introduction

2 System call

3 Related work

4 Ptrace

5 Systrace

6 Performance test

7 Conclusion and future work

Jörg Zinke (Potsdam University) System call tracing overhead Frame 2 of 31



Introduction

Introduction

system call tracing is a common used technique for debuggers or
applications which enforce security policies

for debugging purposes the tracing is often done step-by-step or in
conjunction with breakpoints
for enforcing security policies usually the interception of system calls is
required
→ modify, forbid or allow system calls

Jörg Zinke (Potsdam University) System call tracing overhead Frame 3 of 31



Introduction

Introduction

system call tracing is a common used technique for debuggers or
applications which enforce security policies

for debugging purposes the tracing is often done step-by-step or in
conjunction with breakpoints
for enforcing security policies usually the interception of system calls is
required
→ modify, forbid or allow system calls

Jörg Zinke (Potsdam University) System call tracing overhead Frame 3 of 31



Introduction Overview

Overview

system call interception requires at least a kernel based implementation
and an user space process to trace

usually, there is another process which triggers the tracing and does some
actions before and maybe after the system call

in addition the triggering requires some kind of registration at the kernel
implementation, at least the PID of the application to trace is required
commonly, kernel implementations provide mechanisms for reading
processor registers
→ gives the possibility to modify arguments or even modify the data pointed to

by arguments

Jörg Zinke (Potsdam University) System call tracing overhead Frame 4 of 31



Introduction Overview

Overview

system call interception requires at least a kernel based implementation
and an user space process to trace

usually, there is another process which triggers the tracing and does some
actions before and maybe after the system call

in addition the triggering requires some kind of registration at the kernel
implementation, at least the PID of the application to trace is required
commonly, kernel implementations provide mechanisms for reading
processor registers
→ gives the possibility to modify arguments or even modify the data pointed to

by arguments

Jörg Zinke (Potsdam University) System call tracing overhead Frame 4 of 31



Introduction Overview

Overhead

intercepting system calls involves additional overhead

additional overhead can be ignored for the purpose of debugging but
should be considered for security enforcing applications and other kind of
applications

→ determine the additional overhead through measurements

Jörg Zinke (Potsdam University) System call tracing overhead Frame 5 of 31



Introduction Overview

Overhead

intercepting system calls involves additional overhead

additional overhead can be ignored for the purpose of debugging but
should be considered for security enforcing applications and other kind of
applications

→ determine the additional overhead through measurements

Jörg Zinke (Potsdam University) System call tracing overhead Frame 5 of 31



Introduction Background

Background: server load balancing

Server 1

Server 2

Server n

Switch

Internet Gateway/
Dispatcher

VIP [public]
...

→ trace socket system calls of processes on backend servers to
determine useful metrics and values for load balancing

Jörg Zinke (Potsdam University) System call tracing overhead Frame 6 of 31



Introduction Background

Background: server load balancing

Server 1

Server 2

Server n

Switch

Internet Gateway/
Dispatcher

VIP [public]
...

→ trace socket system calls of processes on backend servers to
determine useful metrics and values for load balancing

Jörg Zinke (Potsdam University) System call tracing overhead Frame 6 of 31



System call

System call

interface between operating system kernel and user space programs is
defined by a set of system calls [Tan01]

system calls vary from OS to OS but concepts tend to be similar

system calls transfers the control to the OS similar to a function call which
enters the kernel

→ system calls are a universal and fundamental mechanism

Jörg Zinke (Potsdam University) System call tracing overhead Frame 7 of 31



System call

System call

interface between operating system kernel and user space programs is
defined by a set of system calls [Tan01]

system calls vary from OS to OS but concepts tend to be similar

system calls transfers the control to the OS similar to a function call which
enters the kernel

→ system calls are a universal and fundamental mechanism

Jörg Zinke (Potsdam University) System call tracing overhead Frame 7 of 31



System call System call implementation

System call implementation

system call tracing implementations are usually use system calls too, for
registering of PIDs from user space

implementing a system call requires control transfer, often done through
interrupts or traps

modern architectures provide SYSCALL/SYSRET or SYSENTER/SYSEXIT
instructions for fast control transfer [BC05]
system call implementations have to take care about restricted rights and
access control
→ e.g. open() has to check whether the file permissions and the owner

match the issuing process

Jörg Zinke (Potsdam University) System call tracing overhead Frame 8 of 31



System call System call implementation

System call implementation

system call tracing implementations are usually use system calls too, for
registering of PIDs from user space

implementing a system call requires control transfer, often done through
interrupts or traps

modern architectures provide SYSCALL/SYSRET or SYSENTER/SYSEXIT
instructions for fast control transfer [BC05]
system call implementations have to take care about restricted rights and
access control
→ e.g. open() has to check whether the file permissions and the owner

match the issuing process

Jörg Zinke (Potsdam University) System call tracing overhead Frame 8 of 31



System call System call interception

System call interception

Three approaches for system call interception mentioned in [Pet97]:

1 kernel based system call interception implemented through a modified
system kernel

2 using a modified system library to replace the default system calls (maybe
using shared libraries and preload mechanisms)

3 using a trace process and a debugging interface like ptrace or systrace for
system call interception of applications

Jörg Zinke (Potsdam University) System call tracing overhead Frame 9 of 31



System call Focus

Focus

→ focus on stable implementations of the third approach in standard kernels
on Linux and OpenBSD, namely ptrace and systrace

→ microbenchmarks to determine overhead, issued through context
switches between traced process and application

→ kernel tracer like ktrace are out of scope caused by background of server
load balancing

Jörg Zinke (Potsdam University) System call tracing overhead Frame 10 of 31



System call Focus

Focus

→ focus on stable implementations of the third approach in standard kernels
on Linux and OpenBSD, namely ptrace and systrace

→ microbenchmarks to determine overhead, issued through context
switches between traced process and application

→ kernel tracer like ktrace are out of scope caused by background of server
load balancing

Jörg Zinke (Potsdam University) System call tracing overhead Frame 10 of 31



System call Focus

Focus

→ focus on stable implementations of the third approach in standard kernels
on Linux and OpenBSD, namely ptrace and systrace

→ microbenchmarks to determine overhead, issued through context
switches between traced process and application

→ kernel tracer like ktrace are out of scope caused by background of server
load balancing

Jörg Zinke (Potsdam University) System call tracing overhead Frame 10 of 31



System call Focus

Focus

→ focus on stable implementations of the third approach in standard kernels
on Linux and OpenBSD, namely ptrace and systrace

→ microbenchmarks to determine overhead, issued through context
switches between traced process and application

→ kernel tracer like ktrace are out of scope caused by background of server
load balancing

Jörg Zinke (Potsdam University) System call tracing overhead Frame 10 of 31



Related work Usage of system call tracing

Debugging applications using system call tracing

well known GDB

ftrace based on frysk

DTrace on Solaris

strace based on ptrace

truss (FreeBSD/SunOS/System V)

→ various commonly used applications for debugging and tracing other
processes are available

Jörg Zinke (Potsdam University) System call tracing overhead Frame 11 of 31



Related work Usage of system call tracing

Debugging applications using system call tracing

well known GDB

ftrace based on frysk

DTrace on Solaris

strace based on ptrace

truss (FreeBSD/SunOS/System V)

→ various commonly used applications for debugging and tracing other
processes are available

Jörg Zinke (Potsdam University) System call tracing overhead Frame 11 of 31



Related work Usage of system call tracing

Security applications using system call tracing

AppArmor

SELinux

grsecurity

systrace

→ various commonly used applications to limit application access and
achieve Mandatory Access Control (MAC) are available

Jörg Zinke (Potsdam University) System call tracing overhead Frame 12 of 31



Related work Usage of system call tracing

Security applications using system call tracing

AppArmor

SELinux

grsecurity

systrace

→ various commonly used applications to limit application access and
achieve Mandatory Access Control (MAC) are available

Jörg Zinke (Potsdam University) System call tracing overhead Frame 12 of 31



Related work Performance studies

Performance system call interception

The performance overhead of a system call interception can be split into the
following two parts [Chu]:

cost of system call interception, for example passing control to the tracing
process at every system call of the traced process

cost of the analysis performed by the tracing process, for example
determining whether the reported request for kernel service should be
allowed every time the tracing process get invoked

Jörg Zinke (Potsdam University) System call tracing overhead Frame 13 of 31



Related work Performance studies

Performance studies systrace

Command Real User System
find /usr/src/ >/dev/null 30 0.2 0.3
systrace find /usr/src/ >/dev/null 42 1.2 3.8

gzip -9 test.bin 2.0 1.7 0.1
systrace gzip -9 test.bin 1.9 1.6 0.1

Table: Systrace overhead from [Pro02].

Jörg Zinke (Potsdam University) System call tracing overhead Frame 14 of 31



Related work Performance studies

Other approaches

reducing the overhead of ptrace through subsets of system calls (policies)

utrace and uprobe as replacement for ptrace

lbox framework (more efficient than ptrace or systrace)

→ shortcomings in performance and overhead of ptrace and systrace require
maybe completely different approaches

Jörg Zinke (Potsdam University) System call tracing overhead Frame 15 of 31



Related work Performance studies

Other approaches

reducing the overhead of ptrace through subsets of system calls (policies)

utrace and uprobe as replacement for ptrace

lbox framework (more efficient than ptrace or systrace)

→ shortcomings in performance and overhead of ptrace and systrace require
maybe completely different approaches

Jörg Zinke (Potsdam University) System call tracing overhead Frame 15 of 31



Ptrace

Ptrace

ptrace system call and kernel implementation is available on Linux and
OpenBSD and on various further operating systems

the system call itself is not part of the POSIX standard

both implementations, Linux and OpenBSD are similar, but the OpenBSD
implementations lacks support of features like PTRACE_SYSCALL (only
PTRACE_SINGLESTEP)

→ only the Linux implementation is considered in the following

Jörg Zinke (Potsdam University) System call tracing overhead Frame 16 of 31



Ptrace

Ptrace

ptrace system call and kernel implementation is available on Linux and
OpenBSD and on various further operating systems

the system call itself is not part of the POSIX standard

both implementations, Linux and OpenBSD are similar, but the OpenBSD
implementations lacks support of features like PTRACE_SYSCALL (only
PTRACE_SINGLESTEP)

→ only the Linux implementation is considered in the following

Jörg Zinke (Potsdam University) System call tracing overhead Frame 16 of 31



Ptrace Ptrace sequence

Ptrace sequence

attach and detach via PTRACE_ATTACH and PTRACE_DETACH system call
arguments

attach means: tracing application becomes parent of the traced process

detach restores original parent

→ main idea is: attach to another process identified by PID, start tracing and
detach later

Jörg Zinke (Potsdam University) System call tracing overhead Frame 17 of 31



Ptrace Ptrace sequence

Ptrace sequence

attach and detach via PTRACE_ATTACH and PTRACE_DETACH system call
arguments

attach means: tracing application becomes parent of the traced process

detach restores original parent

→ main idea is: attach to another process identified by PID, start tracing and
detach later

Jörg Zinke (Potsdam University) System call tracing overhead Frame 17 of 31



Ptrace Ptrace capabilities and options

Ptrace capabilities and options

traced process stops on monitored event (system calls or single step) and
sends SIGCHLD signal its parent

a process can not be traced by two processes at the same time

CAP_SYS_PTRACE capability flag is required to trace every process in
system except init

without capability flag set only processes of the same owner are allowed
to trace

→ tracing parent can read registers and data from the stopped traced
process memory

Jörg Zinke (Potsdam University) System call tracing overhead Frame 18 of 31



Ptrace Ptrace capabilities and options

Ptrace capabilities and options

traced process stops on monitored event (system calls or single step) and
sends SIGCHLD signal its parent

a process can not be traced by two processes at the same time

CAP_SYS_PTRACE capability flag is required to trace every process in
system except init

without capability flag set only processes of the same owner are allowed
to trace

→ tracing parent can read registers and data from the stopped traced
process memory

Jörg Zinke (Potsdam University) System call tracing overhead Frame 18 of 31



Ptrace Ptrace drawbacks

Ptrace drawbacks

ptrace does not allow monitoring of specific system calls, instead just all
system calls are monitored
→ incurring at least two context switches per traced system call

blocks the traced process on every system call it makes, therefore the
tracing process needs to continue the child each time it is blocked

considering that a tracing process might monitor more than one process,
the overhead on the tracing process increases

Jörg Zinke (Potsdam University) System call tracing overhead Frame 19 of 31



Systrace

Systrace

developed by Niels Provos

term systrace refers to the application as well as to the system call and
the according kernel implementation

available for various operating systems, uses different kernel
implementations depending on the operating system, for example, the
systrace application uses ptrace on Linux

→ focus on the kernel based systrace implementation which is available in
the OpenBSD Kernel

Jörg Zinke (Potsdam University) System call tracing overhead Frame 20 of 31



Systrace

Systrace

developed by Niels Provos

term systrace refers to the application as well as to the system call and
the according kernel implementation

available for various operating systems, uses different kernel
implementations depending on the operating system, for example, the
systrace application uses ptrace on Linux

→ focus on the kernel based systrace implementation which is available in
the OpenBSD Kernel

Jörg Zinke (Potsdam University) System call tracing overhead Frame 20 of 31



Systrace Systrace sequence

Systrace sequence

enforce policies on system calls

user space process controls behavior through pseudo-device
/dev/systrace and an ioctl based interface

the ioctl interface together with the defined systrace messages achieve
various tracing operations (similar to ptrace), like STRIOCIO for copying
data in/out of the process being traced

→ systrace attaches to another process identified by PID first, start tracing
them and detach later (similar to ptrace)

Jörg Zinke (Potsdam University) System call tracing overhead Frame 21 of 31



Systrace Systrace sequence

Systrace sequence

enforce policies on system calls

user space process controls behavior through pseudo-device
/dev/systrace and an ioctl based interface

the ioctl interface together with the defined systrace messages achieve
various tracing operations (similar to ptrace), like STRIOCIO for copying
data in/out of the process being traced

→ systrace attaches to another process identified by PID first, start tracing
them and detach later (similar to ptrace)

Jörg Zinke (Potsdam University) System call tracing overhead Frame 21 of 31



Systrace Systrace policies

Systrace policies

three policies can be assigned to system calls
SYSTR_POLICY_PERMIT - immediately allow the system call
SYSTR_POLICY_NEVER - forbids the system call
SYSTR_POLICY_ASK - sends a message of the type SYSTR_MSG_ASK and
puts the process to sleep until the according answer

→ besides the flexibility of systrace policies, they should be fast since basic
policies SYSTR_POLICY_PERMIT and SYSTR_POLICY_NEVER are handled
in kernel without asking user space (fast path)

Jörg Zinke (Potsdam University) System call tracing overhead Frame 22 of 31



Systrace Systrace policies

Systrace policies

three policies can be assigned to system calls
SYSTR_POLICY_PERMIT - immediately allow the system call
SYSTR_POLICY_NEVER - forbids the system call
SYSTR_POLICY_ASK - sends a message of the type SYSTR_MSG_ASK and
puts the process to sleep until the according answer

→ besides the flexibility of systrace policies, they should be fast since basic
policies SYSTR_POLICY_PERMIT and SYSTR_POLICY_NEVER are handled
in kernel without asking user space (fast path)

Jörg Zinke (Potsdam University) System call tracing overhead Frame 22 of 31



Performance test Measurement environment

Measurement environment

Dual Core Xeon 1.86 GHz in a dual-boot configuration running
CentOS 5.2 for ptrace measurements and OpenBSD 4.3 for the systrace
measurements

all measurements gather the number of CPU cycles through the rdtsc
register and all are repeated 51 times explictly to avoid cache effects

the median is used to calculate the result from the 51 repetitions to
obviate distortions

Jörg Zinke (Potsdam University) System call tracing overhead Frame 23 of 31



Performance test Measurement experiments

Measurement experiments

first the number of CPU Cycles for the three single plain system calls
open(), write() and close() are measured

then the measurements are done again while tracing these system calls

additional measurements are done for all three system calls in a
sequence and again with an invalid file descriptor

Jörg Zinke (Potsdam University) System call tracing overhead Frame 24 of 31



Performance test Measurement Results

Plain system calls

open write close open write close
0

5000

10000

15000

20000

25000

30000

invalid file descriptor
valid file descriptor

C
y
cl
e
s

Figure: System calls with and without valid file descriptors.

Jörg Zinke (Potsdam University) System call tracing overhead Frame 25 of 31



Performance test Measurement Results

Flapping effect

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
0

50000

100000

150000

200000

250000

write

Rounds

C
y
cl
e
s

Figure: Flapping for write() and ptrace with invalid file descriptor.

Jörg Zinke (Potsdam University) System call tracing overhead Frame 26 of 31



Performance test Measurement Results

Overhead with valid file descriptors

open write close open write close
0

50000

100000

150000

200000

250000

300000

350000

overhead ptrace (wc)
overhead ptrace (bc)
overhead systrace

C
y
cl
e
s

1579%

434%

2664%

1146%

372%
434%

500%

671%

546%

206%
570%

338%

Figure: Overhead for ptrace and systrace with valid file descriptors.

Jörg Zinke (Potsdam University) System call tracing overhead Frame 27 of 31



Performance test Measurement Results

Overhead with invalid file descripors

open write close open write close
0

50000

100000

150000

200000

250000

overhead ptrace (wc)
overhead ptrace (bc)
overhead systrace

C
y
cl
e
s

1726%
3586% 3844%

1392%

384%
630% 660%

543%

562%

794%
976%

671%

Figure: Overhead for ptrace and systrace with invalid file descriptors.

Jörg Zinke (Potsdam University) System call tracing overhead Frame 28 of 31



Conclusion and future work

Conclusion and future work

system call interception through systrace or ptrace is considered as slow

a sequence of system calls is faster than all involved single system calls

ptrace interface measurements show some strange flapping results, which
are in the worst case scenario slower then the competitor measurements
from systrace

policy concept of systrace is considered to be faster and more flexible
than ptrace

overhead looks dramatically high

→ can be considered as negligible small for the sake of improved security
and flexibility

→ further macrobenchmarks measurements in the field of self-adapting
server load balancing have shown that the overhead can not be
considered as negligible small therefore

Jörg Zinke (Potsdam University) System call tracing overhead Frame 29 of 31



Conclusion and future work

Conclusion and future work

system call interception through systrace or ptrace is considered as slow

a sequence of system calls is faster than all involved single system calls

ptrace interface measurements show some strange flapping results, which
are in the worst case scenario slower then the competitor measurements
from systrace

policy concept of systrace is considered to be faster and more flexible
than ptrace

overhead looks dramatically high

→ can be considered as negligible small for the sake of improved security
and flexibility

→ further macrobenchmarks measurements in the field of self-adapting
server load balancing have shown that the overhead can not be
considered as negligible small therefore

Jörg Zinke (Potsdam University) System call tracing overhead Frame 29 of 31



Conclusion and future work

Conclusion and future work

system call interception through systrace or ptrace is considered as slow

a sequence of system calls is faster than all involved single system calls

ptrace interface measurements show some strange flapping results, which
are in the worst case scenario slower then the competitor measurements
from systrace

policy concept of systrace is considered to be faster and more flexible
than ptrace

overhead looks dramatically high

→ can be considered as negligible small for the sake of improved security
and flexibility

→ further macrobenchmarks measurements in the field of self-adapting
server load balancing have shown that the overhead can not be
considered as negligible small therefore

Jörg Zinke (Potsdam University) System call tracing overhead Frame 29 of 31



Literature

Literature I

Daniel Bovet and Marco Cesati.
Understanding The Linux Kernel.
Oreilly & Associates Inc, 3rd edition, 2005.

Simon P. Chung.
On the (Im)Practicality of System-Call-Based IDSs.
http://www.cs.utexas.edu/users/phchung/publication.html.
Accessed 09/04.

Stefan Petri.
Lastausgleich und Fehlertoleranz in Workstation-Clustern.
Shaker Verlag, May 1997.

Jörg Zinke (Potsdam University) System call tracing overhead Frame 30 of 31

http://www.cs.utexas.edu/users/phchung/publication.html


Literature

Literature II

Niels Provos.
Systrace Interactive Policy Generation for System Calls.
http://www.citi.umich.edu/u/provos/papers/systrace-lsm/,
July 2002.
Libre Software Meeting, Bordeaux, France, accessed 09/04.

Andrew S. Tanenbaum.
Modern Operating Systems.
Prentice Hall, 2001.

Jörg Zinke (Potsdam University) System call tracing overhead Frame 31 of 31

http://www.citi.umich.edu/u/provos/papers/systrace-lsm/

	Introduction
	Overview
	Background

	System call
	System call implementation
	System call interception
	Focus

	Related work
	Usage of system call tracing
	Performance studies

	Ptrace
	Ptrace sequence
	Ptrace capabilities and options
	Ptrace drawbacks

	Systrace
	Systrace sequence
	Systrace policies

	Performance test
	Measurement environment
	Measurement experiments
	Measurement Results

	Conclusion and future work
	Appendix
	Literature


