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Introduction

Introduction

system call tracing is a common used technique for debuggers or
applications which enforce security policies

for debugging purposes the tracing is often done step-by-step or in
conjunction with breakpoints
for enforcing security policies usually the interception of system calls is
required
→ modify, forbid or allow system calls
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Introduction Overview

Overview

system call interception requires at least a kernel based implementation
and an user space process to trace

usually, there is another process which triggers the tracing and does some
actions before and maybe after the system call

in addition the triggering requires some kind of registration at the kernel
implementation, at least the PID of the application to trace is required
commonly, kernel implementations provide mechanisms for reading
processor registers
→ gives the possibility to modify arguments or even modify the data pointed to

by arguments
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Introduction Overview

Overhead

intercepting system calls involves additional overhead

additional overhead can be ignored for the purpose of debugging but
should be considered for security enforcing applications and other kind of
applications

→ determine the additional overhead through measurements
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Introduction Background

Background: server load balancing

Server 1

Server 2

Server n

Switch

Internet Gateway/
Dispatcher

VIP [public]
...

→ trace socket system calls of processes on backend servers to
determine useful metrics and values for load balancing
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System call

System call

interface between operating system kernel and user space programs is
defined by a set of system calls [Tan01]

system calls vary from OS to OS but concepts tend to be similar

system calls transfers the control to the OS similar to a function call which
enters the kernel

→ system calls are a universal and fundamental mechanism

Jörg Zinke (Potsdam University) System call tracing overhead Frame 7 of 31



System call

System call

interface between operating system kernel and user space programs is
defined by a set of system calls [Tan01]

system calls vary from OS to OS but concepts tend to be similar

system calls transfers the control to the OS similar to a function call which
enters the kernel

→ system calls are a universal and fundamental mechanism

Jörg Zinke (Potsdam University) System call tracing overhead Frame 7 of 31



System call System call implementation

System call implementation

system call tracing implementations are usually use system calls too, for
registering of PIDs from user space

implementing a system call requires control transfer, often done through
interrupts or traps

modern architectures provide SYSCALL/SYSRET or SYSENTER/SYSEXIT
instructions for fast control transfer [BC05]
system call implementations have to take care about restricted rights and
access control
→ e.g. open() has to check whether the file permissions and the owner

match the issuing process
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System call System call interception

System call interception

Three approaches for system call interception mentioned in [Pet97]:

1 kernel based system call interception implemented through a modified
system kernel

2 using a modified system library to replace the default system calls (maybe
using shared libraries and preload mechanisms)

3 using a trace process and a debugging interface like ptrace or systrace for
system call interception of applications
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System call Focus

Focus

→ focus on stable implementations of the third approach in standard kernels
on Linux and OpenBSD, namely ptrace and systrace

→ microbenchmarks to determine overhead, issued through context
switches between traced process and application

→ kernel tracer like ktrace are out of scope caused by background of server
load balancing
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Related work Usage of system call tracing

Debugging applications using system call tracing

well known GDB

ftrace based on frysk

DTrace on Solaris

strace based on ptrace

truss (FreeBSD/SunOS/System V)

→ various commonly used applications for debugging and tracing other
processes are available
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Related work Usage of system call tracing

Security applications using system call tracing

AppArmor

SELinux

grsecurity

systrace

→ various commonly used applications to limit application access and
achieve Mandatory Access Control (MAC) are available
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Related work Performance studies

Performance system call interception

The performance overhead of a system call interception can be split into the
following two parts [Chu]:

cost of system call interception, for example passing control to the tracing
process at every system call of the traced process

cost of the analysis performed by the tracing process, for example
determining whether the reported request for kernel service should be
allowed every time the tracing process get invoked
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Related work Performance studies

Performance studies systrace

Command Real User System
find /usr/src/ >/dev/null 30 0.2 0.3
systrace find /usr/src/ >/dev/null 42 1.2 3.8

gzip -9 test.bin 2.0 1.7 0.1
systrace gzip -9 test.bin 1.9 1.6 0.1

Table: Systrace overhead from [Pro02].
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Related work Performance studies

Other approaches

reducing the overhead of ptrace through subsets of system calls (policies)

utrace and uprobe as replacement for ptrace

lbox framework (more efficient than ptrace or systrace)

→ shortcomings in performance and overhead of ptrace and systrace require
maybe completely different approaches
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Ptrace

Ptrace

ptrace system call and kernel implementation is available on Linux and
OpenBSD and on various further operating systems

the system call itself is not part of the POSIX standard

both implementations, Linux and OpenBSD are similar, but the OpenBSD
implementations lacks support of features like PTRACE_SYSCALL (only
PTRACE_SINGLESTEP)

→ only the Linux implementation is considered in the following
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Ptrace Ptrace sequence

Ptrace sequence

attach and detach via PTRACE_ATTACH and PTRACE_DETACH system call
arguments

attach means: tracing application becomes parent of the traced process

detach restores original parent

→ main idea is: attach to another process identified by PID, start tracing and
detach later
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Ptrace Ptrace capabilities and options

Ptrace capabilities and options

traced process stops on monitored event (system calls or single step) and
sends SIGCHLD signal its parent

a process can not be traced by two processes at the same time

CAP_SYS_PTRACE capability flag is required to trace every process in
system except init

without capability flag set only processes of the same owner are allowed
to trace

→ tracing parent can read registers and data from the stopped traced
process memory

Jörg Zinke (Potsdam University) System call tracing overhead Frame 18 of 31



Ptrace Ptrace capabilities and options

Ptrace capabilities and options

traced process stops on monitored event (system calls or single step) and
sends SIGCHLD signal its parent

a process can not be traced by two processes at the same time

CAP_SYS_PTRACE capability flag is required to trace every process in
system except init

without capability flag set only processes of the same owner are allowed
to trace

→ tracing parent can read registers and data from the stopped traced
process memory

Jörg Zinke (Potsdam University) System call tracing overhead Frame 18 of 31



Ptrace Ptrace drawbacks

Ptrace drawbacks

ptrace does not allow monitoring of specific system calls, instead just all
system calls are monitored
→ incurring at least two context switches per traced system call

blocks the traced process on every system call it makes, therefore the
tracing process needs to continue the child each time it is blocked

considering that a tracing process might monitor more than one process,
the overhead on the tracing process increases
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Systrace

Systrace

developed by Niels Provos

term systrace refers to the application as well as to the system call and
the according kernel implementation

available for various operating systems, uses different kernel
implementations depending on the operating system, for example, the
systrace application uses ptrace on Linux

→ focus on the kernel based systrace implementation which is available in
the OpenBSD Kernel
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Systrace Systrace sequence

Systrace sequence

enforce policies on system calls

user space process controls behavior through pseudo-device
/dev/systrace and an ioctl based interface

the ioctl interface together with the defined systrace messages achieve
various tracing operations (similar to ptrace), like STRIOCIO for copying
data in/out of the process being traced

→ systrace attaches to another process identified by PID first, start tracing
them and detach later (similar to ptrace)
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Systrace Systrace policies

Systrace policies

three policies can be assigned to system calls
SYSTR_POLICY_PERMIT - immediately allow the system call
SYSTR_POLICY_NEVER - forbids the system call
SYSTR_POLICY_ASK - sends a message of the type SYSTR_MSG_ASK and
puts the process to sleep until the according answer

→ besides the flexibility of systrace policies, they should be fast since basic
policies SYSTR_POLICY_PERMIT and SYSTR_POLICY_NEVER are handled
in kernel without asking user space (fast path)
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Performance test Measurement environment

Measurement environment

Dual Core Xeon 1.86 GHz in a dual-boot configuration running
CentOS 5.2 for ptrace measurements and OpenBSD 4.3 for the systrace
measurements

all measurements gather the number of CPU cycles through the rdtsc
register and all are repeated 51 times explictly to avoid cache effects

the median is used to calculate the result from the 51 repetitions to
obviate distortions
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Performance test Measurement experiments

Measurement experiments

first the number of CPU Cycles for the three single plain system calls
open(), write() and close() are measured

then the measurements are done again while tracing these system calls

additional measurements are done for all three system calls in a
sequence and again with an invalid file descriptor
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Performance test Measurement Results

Plain system calls
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Figure: System calls with and without valid file descriptors.
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Performance test Measurement Results

Flapping effect
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Figure: Flapping for write() and ptrace with invalid file descriptor.
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Performance test Measurement Results

Overhead with valid file descriptors
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Figure: Overhead for ptrace and systrace with valid file descriptors.
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Performance test Measurement Results

Overhead with invalid file descripors
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Figure: Overhead for ptrace and systrace with invalid file descriptors.
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Conclusion and future work

Conclusion and future work

system call interception through systrace or ptrace is considered as slow

a sequence of system calls is faster than all involved single system calls

ptrace interface measurements show some strange flapping results, which
are in the worst case scenario slower then the competitor measurements
from systrace

policy concept of systrace is considered to be faster and more flexible
than ptrace

overhead looks dramatically high

→ can be considered as negligible small for the sake of improved security
and flexibility

→ further macrobenchmarks measurements in the field of self-adapting
server load balancing have shown that the overhead can not be
considered as negligible small therefore
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